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Individuals frommultiple species often aggregate at resources, group to facili-
tate defense and foraging, or are brought together by human activity. While it
is well-documented that host-seeking disease vectors and parasites show
biases in their responses to cues from different hosts, the influence of mixed-
species assemblages on disease dynamics has received limited attention.
Here, we synthesize relevant research in host-specific vector and parasite
bias. To better understand how vector and parasite biases influence infection,
we provide a conceptual framework describing cue-oriented vector and para-
site host-seeking behaviour as a two-stage process that encompasses attraction
of these enemies to the assemblage and their choice of hosts once at the assem-
blage. We illustrate this framework, developing a case study of mixed-species
frog assemblages, where frog-biting midges transmit trypanosomes. Finally,
we present a mathematical model that investigates how host species compo-
sition and asymmetries in vector attraction modulate transmission dynamics
in mixed-species assemblages. We argue that differential attraction of vectors
by hosts can have important consequences for disease transmission within
mixed-species assemblages, with implications for wildlife conservation and
zoonotic disease.

This article is part of the theme issue ‘Mixed-species groups and
aggregations: shaping ecological and behavioural patterns and processes’.
1. Introduction
Infectious diseases are often spread in ecological communities where species
vary in their ability to acquire and transmit pathogens. Since ecological inter-
actions can influence pathogen exposure [1,2], understanding the community
context of transmission can be crucial for shaping conservation and public
health interventions. Investigations of disease dynamics in communities usually
focus on the effects of the density or relative frequency of hosts that vary in their
susceptibility to, or tolerance of, infection [2,3]. Often ignored, however, are
host-specific biases in vector and parasite foraging behaviour that could influ-
ence disease transmission. Cue-oriented vectors and parasites are organisms
that harm hosts indirectly through the transmission of infectious agents
or directly through parasitism, and that exploit host-emitted cues to locate or
identify hosts. This diverse group, including blood-feeding mosquitoes, ticks,
bats and sap-feeding aphids [4], relies on host cues from a variety of sensory
modalities, including olfaction [5], vision [6] and audition [7]. Such cues med-
iate choice between host species [8], and result in differential host attraction that
can alter infection dynamics. While it has long been recognized that sensory
cues influence vector and parasite attraction to focal host individuals or species
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[8,9], it is less well-understood how cue-oriented foraging
behaviour affects disease dynamics in a community context.

One widespread and ecologically important grouping
of species that could influence pathogen dynamics are
mixed-species assemblages, which we define as a gathering of
individuals of at least two species, from the same trophic
level, that are within close spatial proximity. This definition
includes both assemblages where individuals actively choose
to join a group (mixed-species groups) and thosewhere individ-
uals aggregate based on the distribution of shared resources
(mixed-species aggregations) [10,11]. Mixed-species assem-
blages are found in diverse clades including mammals, birds,
fish, amphibians and arthropods, in contexts such as feeding
guilds, mating arenas or communal nesting or roosting sites.
Assemblages can help individuals find food, detect and avoid
predators, or exploit suitable breeding or nesting sites [11].
Compared to multi-trophic communities, where hosts have
less spatially and temporally restrictive associations and vary
widely in abundance, foraging style and traits influencing
pathogen transmission, mixed-species assemblages often con-
tain fewer,more closely related specieswith similar life histories.

In this study, we propose that the composition of mixed-
species assemblages canmodulate the attraction of cue-oriented
vectors and parasites to the assemblage as a whole, as well as
influence vector and parasite attraction to host species within
the assemblage, ultimately impacting infection levels and feed-
ing back to influence assemblage composition. We first
highlight empirical studies of cue-oriented vectors and para-
sites attacking mixed-species assemblages. We then look
beyond mixed-species assemblages at examples of vector and
parasite biases within and between host species. We discuss
how biases can influence the number and search efficiency of
cue-oriented vectors and parasites recruited to mixed-species
assemblages, and how this could interact with differential
attraction to hosts within the assemblage to affect disease
dynamics.We extend this conceptual framework by integrating
insights from a natural system with those provided by a math-
ematical model. We develop a case study based on mating
assemblages where different frog species are attacked by an
eavesdropping vector and present a two-host one-vector
model that investigates how cue-mediated changes in vector
attraction to the assemblage, search efficiency, and bite attrac-
tion to hosts modulate transmission dynamics. Ultimately, we
provide a broad perspective about how disease transmission
in mixed-species assemblages can shape, and be shaped by,
host composition, and identify future directions to further
examine this phenomenon.
2. Cue-oriented vectors and parasites in mixed-
species assemblages

The diverse and recurrent interactions that occur in mixed-
species assemblages have important consequences for the
ecology of communities that likely extend to host–pathogen
dynamics. Mixed-species assemblages may decrease trans-
mission risk for individuals by diluting the number of
conspecific hosts with high competence for infection (ability
to obtain and transmit pathogens) [12,13]. Alternatively, elev-
ated transmission (amplification) might result from increased
exposure of cue-oriented vectors or parasites to competent
hosts of multiple species [11,14]. Pathogen dilution and ampli-
fication are widely documented for vectors and parasites
infecting diverse host communities [2,15]. Ultimately, pro-
cesses contributing to dilution and amplification at the scale
of mixed assemblages may either reinforce or counteract
those at the larger scale of the community.

Although some studies discuss disease transmission in
mixed-species assemblages based on direct or environmental
transmission [16–20], fewer have focused on cue-oriented vec-
tors and parasites. Moreover, those studies provide mixed
evidence regarding the effect of host diversity on disease
outcomes. Studies investigating vector-borne avian haemopar-
asites suggest mixed-species groups can result in disease
amplification. For example, birds in mixed flocks experienced
increased prevalence of Haemoproteus and Leucocytozoon blood
parasites [21] and ticks [22] compared to species not found
in flocks. Similarly, a study comparing mixed-species and
single-species groups showed that bird species in mixed
flocks had higher rates of mosquito-borne Plasmodium
infection than those in single-species flocks [23]. While these
results suggest disease amplification, other findings provide
contrasting evidence, in some cases for the same parasites
but in different communities, complicating identification of
overarching patterns [21,23,24].

Patterns seen at the community level might not be equival-
ent to those experienced by vectors and hosts at the level of
mixed-species assemblages, and individual-level effects of
participating in mixed assemblages can be species-dependent.
For example, in mixed-nesting colonies of cliff swallows
(Petrochelidon pyrrhonota) and invasive house sparrows (Passer
domesticus), sparrow nests had lower prevalence of Buggy
Creek virus (BCRV), transmitted by swallow bugs (Oeciacus
vicarius), compared to nests in single-species colonies [25].
This benefit was not, however, symmetrical. Cliff swallows
experienced similar BCRV prevalence in nests from mixed-
species and single-species colonies. Overall infection preva-
lence across colonies was high, presumably driven by the
presence of sparrows. Thus, participation in mixed-breeding
colonies decreased infection rates for individual house
sparrows while contributing to disease amplification at the
community level.

Mixed-species communal roosts are common for bird
species associated with west Nile virus (WNV), including
the American robin, Turdus migratorius [26]. Dilution of trans-
mission in mixed-species contexts has been invoked as a
potential cause of reduced WNV infection rates among mos-
quitoes from communal roosts [26,27]. To our knowledge,
however, the effects of mixed-species roosting on vector-
borne disease dynamics have not been directly assessed,
nor compared to those found in single-species roosts.
House sparrows placed in communal roosts of American
robins experienced lower WNV risk and encounter rates
with mosquitoes than sparrows in non-roost locations [28].
While this study did not interpret the results from a mixed-
species perspective, it suggests that heterospecific hosts can
influence transmission rates in mixed-species roosting sites.

Studies of disease prevalence inmixed-species assemblages
reveal that while they can modulate disease dynamics associ-
ated with cue-oriented vectors and parasites, the direction of
these effects is difficult to predict. In addition, host vulner-
ability in mixed assemblages may be affected by the species
identities of group members. For example, mixed flocks often
include nuclear species, which influence decisions of hetero-
specifics to join or remain in the flock, encouraging group
formation and cohesion [11]. These nuclear species can be
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more frequently infected with haemoparasites in mixed flocks
[21]. Thus, species composition, and in particular, the role and
host competence of certain species may influence disease
prevalence in mixed-species assemblages.

Evaluating interspecific variation in disease prevalence
within mixed-species assemblages provides a general perspec-
tive of the influence of cue-oriented vectors and parasites on
disease dynamics of these groups. This approach, however,
ignores the mechanisms underlying differential disease out-
comes for members of those assemblages. Including the
effect that different species composition, and thus different
cue combinations, have on vector and parasite attraction to
the assemblage, as well as attraction to individuals once at
the assemblage, may increase predictive power for disease
dynamics in mixed-species assemblages.
 Trans.R.Soc.B

378:20220109
3. Cue-oriented vector and parasite biases
outside of mixed-species assemblages

While few studies have investigated the dynamics of cue-
oriented vector and parasite infections inmixed-species assem-
blages, it is well-known that not all members of a community
are attacked at the same rate [9,29,30]. In this section, we
draw from literature that examines how host type influences
foraging patterns in cue-oriented vectors and parasites, includ-
ing studies examining how host type influences attack rates at
the intraspecific (single-species) and interspecific (multi-
species) levels. We interpret patterns from this literature,
assuming that factors producing biases in vector and parasite
attacks in non-assemblage contexts act similarly within
mixed-species assemblages.

(a) Intraspecific variation in host-emitted cues and
vector and parasite biases

Within species, cues emitted by individuals can differ greatly,
potentially modulating their attractiveness to vectors and
parasites. In humans, for example, variation in volatile
skin chemicals is partially responsible for inter-individual
variation in relative attractiveness to haematophagous vectors
[31]. Several factors, including reproductive status or diet,
can result in differential attack rates. Pregnant women, for
example, are more likely to be bitten by Anopheles and
Mansonia mosquitoes than non-pregnant women [32,33],
and hosts that recently consumed bananas or beer receive
more mosquito visits [34,35]. Similarly, host size can also
influence cue-oriented vector and parasite attack rates. Hae-
matophagous flies (Carnus hemapterus) prefer larger nestling
European bee-eaters (Merops apiaster) [36], and Culex mosqui-
toes are more attracted to odours of adults than nestling
house sparrows [37]. In some cases, vector bias toward
larger individuals is driven by quantitative differences
in host metabolites. Macrocheles mites, for example, preferen-
tially feed upon Drosophila fruit flies that produce higher
quantities of CO2 [38]. Mixed-species assemblages with indi-
viduals from species varying in size or metabolic rates could
create similar biases.

Acoustically oriented vectors and parasites home in on
host calls and are often attracted to particular call variants.
Ormiini parasitoid flies, for example, prefer specific cicada
and cricket song variants. Therobia leonidei are biased
toward male bush-crickets (Poecilimon thessalicus) producing
songs that are also more attractive to females [39]. Similarly,
Ormia ochracea preferentially orient to male variable field
cricket (Gryllus lineaticeps) songs with faster and longer
chirps [40] and to field crickets (Teleogryllus oceanicus) produ-
cing longer chirps and shorter interpulse intervals [41].
Finally, tachinid fly parasitoids of the bush-cricket Mecopoda
elongata are more likely to attack crickets producing one
of three alternative song types [42]. Attraction biases are
also apparent in eavesdropping vectors. Frog-biting midges
(Corethrella spp.), which transmit trypanosomes [43,44],
preferentially attack túngara frogs (Engystomops pustulosus)
producing more complex calls [45].

(b) Interspecific variation in host-emitted cues and
vector and parasite biases

Cue-oriented vectors and parasites can exhibit strong species-
specific host biases. To study patterns in host use, molecular
analysis is often used to identify the source of recent blood
meals [46]. While this method is vital in documenting the
outcome of vector foraging behaviour in the wild, it is influ-
enced by the relative abundance of host species within a
community. Here, we focus on field and laboratory choice
tests as more direct measures of biases in host-seeking behav-
iour. We include bloodmeal identification studies when the
relative abundances of local hosts are also quantified.

Biases of mosquitoes either towards or against human
hosts have been widely studied [9]. In choice trials, where
human or calf odour was paired with CO2, Anopheles and
Aedes mosquitoes were more likely to approach human over
calf hosts, while Culex mosquitoes showed higher visitation
to calf odours [47]. Studies with wild mosquito and host com-
munities also show clear feeding biases. Bloodmeal analyses
reveal that some hosts are attacked more often than expected
given their relative abundances. Culex mosquitoes, con-
sidered principal vectors of WNV, overuse American robins
relative to their local abundances and abundances of other
avian hosts [48].

Several other cue-oriented dipteran vectors feed on a nar-
rower subset of species within a broader range of available
hosts. Tsetse flies (Glossina spp.) are more attracted to chemical
cues of non-human mammals than those of humans [49]; and
sand flies (Phlebotomus spp.) are differentially attracted to
humans and various domestic and wild hosts [50]. Similarly,
ixodid ticks exhibit strong biases for the odours of certain
host species over other viable hosts both in the laboratory
and field [51,52].

Acoustically oriented vectors also discriminate between
multiple host species based on their calls. Attack biases of
frog-biting midges for some call types extend beyond
within-species variation [53,54], and while flesh flies (Emble-
masoma erro) parasitize a wide range of cicadas, they prefer
hosts that call with certain amplitude and spectral character-
istics [55]. In populations where Ormia ochracea exploits
multiple cricket species, these flies express interspecific host
song preferences, but preference strength is lower compared
to flies from single-host populations [56]. Therobia leonidei
flies, by contrast, are more attracted to Poecilimon bush-
crickets with longer songs, regardless of whether they are
native to the region, perhaps because these songs are easier
to detect and localize [57].

The pattern of interspecific preferences in cue-oriented vec-
tors and parasites is not confined to terrestrial environments.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220109

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
23

 

In choice trials, trematode parasites (Ribeiroia ondatrae, Alaria
marcinae and Cephalogonimus americanus) had strong prefer-
ences for particular frog and newt tadpole host species [58].
Similarly, in separate choice trials, trematodes (Euparyphium
albuferensis and Echinostoma friedi) differentially infected four
species of freshwater snails [59]. Ultimately, disparities in
host species’ attractiveness provide the raw material for
host-use biases in mixed-species assemblages.

(c) Effects of vector and parasite host-use biases on
disease dynamics

Mathematical models demonstrate that disparities among
host types in attack rates, such as those described above,
can strongly affect community-level disease dynamics. In
cases where hosts vary in competence, amplification gener-
ally results from attack biases toward more competent
hosts, and dilution from biases toward less competent hosts
[60–62]. While models often assume that vector and parasite
biases are static, these biases and their effects on disease
dynamics can change. Some lineages of dog ticks (Rhipicepha-
lus sanguineus), for example, shift to more strongly prefer
human versus canine hosts as ambient temperatures rise,
increasing disease transmission risks to humans [63]. Some
pathogens are hypothesized to manipulate infected vectors
to preferentially target higher-competence hosts [64]; this is
supported by experiments examining the foraging behaviour
of malaria-infected mosquitoes and by modelling that pre-
dicts small infection-induced behavioural changes can elicit
substantial effects on transmission [65].
4. Differential attraction and disease dynamics in
mixed-species assemblages

While many studies show that cue-oriented vectors and para-
sites can differentially assort among hosts species, less is
known about how local mixed-species assemblages might
influence vector and parasite recruitment to those commu-
nities. Because host species are often unevenly distributed
across the landscape as they aggregate around resources or
actively associate with other individuals, mixed assemblages
emitting particularly attractive cues or combinations of cues
could experience higher attack rates from cue-oriented
vectors and parasites through mechanisms operating at the
assemblage and individual-host levels. At the assemblage
level, species composition and relative abundance of different
host cues could alter the number of vectors and parasites
drawn to the group [66,67]; we call this ‘assemblage attraction’.
The combination of cues in an assemblage could also draw
vectors and parasites more quickly, influencing their search
efficiency. As vectors spend less time searching, cues can ulti-
mately affect the rate at which they bite hosts (bite rate). These
factors are rarely addressed in mixed-species assemblages.

Once within the assemblage, vectors and parasites use
cues to choose between the available host species, a process
we call ‘bite attraction’. This term is similar to ‘preference’
used in Trillo et al. [66] to describe the proportion of eaves-
droppers attacking one prey species over another within
mixed-species assemblages. Although ‘preference’ is com-
monly used in vector-borne disease studies, it has been
used to describe both the relative number of bites experi-
enced by different host types in the wild, where encounter
rates with vectors vary, as well as the result of choice trials,
where host availability to vectors is carefully controlled.
Here, we use ‘bite attraction’ rather than ‘preference’ to
focus exclusively on contexts where vectors and parasites
have opportunities to assess multiple host types. Both ‘assem-
blage attraction’ and ‘bite attraction’ are broadly defined to
include perceptual, cognitive and motor processes under-
lying choice. Vector and parasite decisions at these two
levels may combine to influence overall infection rates [66].

The range over which cues are detected by vectors and
parasites may vary between host species. Vectors and para-
sites attracted from a distance by cues with large ranges
may, once at the assemblage, either continue to target these
cues or switch to cues with more restricted ranges. Thus,
cues of one species that attract greater numbers of vectors
or parasites to an assemblage may also increase bite attraction
to this same species within the assemblage, increasing its dis-
ease risk relative to other species. The contrasting situation, in
which one host species’ cue is more attractive to enemies at a
distance, while another hosts’ cue attracts more bites within
the assemblage, is also plausible and may create nuanced
patterns of infection. Mismatches in ‘assemblage attraction’
and ‘bite attraction’ may occur when vectors and parasites
sequentially assess different cues as they approach a host.
Flesh flies in the genus Emblemasoma, for example, are
attracted to acoustic cues when locating cicada hosts but
rely on visual cues in close proximity [55]. Likewise, Aedes
and other mosquitoes are drawn to hosts from a distance
via CO2 cues and volatile skin odorants but use visual cues,
temperature and humidity surrounding the host’s body at
closer distances [30,68,69].

Considering the influence of assemblage attraction on
multi-host disease dynamics requires new focus on the long-
range assessment and localization behaviours of cue-oriented
vectors and parasites. Vector and parasite biases are often
tested over short distances, but host-seeking behaviour often
involves distant targets. For example, tsetse flies (Glossina
spp.) respond to hosts’ odour cues from 30–90 m away and
to visual cues at distances over 100 m [70,71], whereas tabanid
flies (horse flies) travel toward odours emanating fromhosts up
to 80 m away [72]. Mosquitoes vary in the range at which acti-
vation and orientation behaviour towards the host are elicited,
but some can navigate toward non-host visual cues up to 35–
40 m away [68]. Below we discuss a case study where there is
differential attraction to host species’ mating signals used as
cues by eavesdropping midges. This case study informs our
mathematical model, which investigates how differential
vector attraction alters disease dynamics.
5. Case study: mixed-species frog choruses and
eavesdropping vectors

Many anurans aggregate in choruses to advertise to mates.
Because these aggregations often form in wetlands and
water bodies used as breeding habitat, it is common for
multiple species to chorus in the same location [73]. Such
mixed-species assemblages can attract frog-biting midges
(Corethrellidae) and mosquitoes (Culicidae) that cue in on
calls of male frogs and ultimately bite them. Here we focus
on a community of frogs in Panama that often form mixed-
species assemblages, and the eavesdropping frog-biting
midges associated with them. In this community, two
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anuran species, túngara frogs (Engystomops pustulosus) and
hourglass treefrogs (Dendropsophus ebraccatus), often aggre-
gate to call at the same puddles and ponds [74], where
cue-oriented midges (Corethrella spp.) are attracted in large
numbers to frog calls [45] rather than CO2, or other cues
commonly used by haematophagous vectors [75].

Frog-biting midges attack multiple frog species in a given
community [53,54,76]. Calls produced by túngara frogs,
however, are more attractive to the midges than those of tree-
frogs, a bias that affects attack rates suffered by these species
when calling from the same assemblage (figure 1a). Hour-
glass treefrogs calling nearby túngara frogs attract more
frog-biting midges than if calling near conspecific males
[77]. The effect of incurring higher vector attack risk by call-
ing next to a more attractive signaller was termed ‘collateral
damage’ (figure 1b). The level of collateral damage for hour-
glass treefrogs depends on the relative abundance of túngara
frogs in the assemblage [78]. Thus, the relative abundance of
species highly attractive to cue-oriented vectors and parasites
in mixed-species assemblages may influence risk for less
attractive species.

The opposite pattern, where calling nearby a more
attractive signaller is beneficial to less attractive species, may
arise if vectors attracted to the assemblage preferentially
attack signallers of the more attractive species, overlooking
less attractive individuals calling nearby. This mechanism
was termed ‘shadow of safety’ (figure 1b). The ‘collateral
damage’ and ‘shadow of safety’ scenarios present contrasting
consequences resulting from vector and parasite biases
that could contribute to asymmetries in assemblage and bite
attraction. Therefore, at a given mixed-species assemblage,
differential effects among pairs of species could result in
diverse landscapes, with collateral damage and shadow of
safety effects scattered across the network of species
interactions. Ultimately, this framework can guide investi-
gations of how cue-oriented vector attack rates vary due to
assemblage composition.

Frog-biting midges are vectors of trypanosome parasites
[43,44] and other pathogens. Trypanosome transmission can
result from fecal deposits touching wounds, consumption
of infected vectors by hosts or, in the case of frog-biting
midges, during blood feeding via saliva [77]. Therefore,
differential attack rates at conspecific versus mixed-species
choruses likely shape trypanosome infection rates for hosts.
Anuran trypanosomes are often found in a single family of
hosts [79,80], suggesting limited ability of trypanosomes to
survive across the many hosts bitten by frog-biting midges.
In the case of choruses of túngara frogs and hourglass tree-
frogs, increased vector bite rates for dead-end hosts could
result in dilution. Further studies, however, are needed
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to better understand host competency and trypanosome
transmission dynamics within this species pair.

Phenomena illustrated in this case study may be more
common than previously anticipated. Cue-oriented haemato-
phagous flies are common vectors at anuran choruses.
Eavesdropping on frog calls to obtain a bloodmeal is a wide-
spread strategy among Diptera, recognized in over 191
species across 23 genera [76]. Several of these species can trans-
mit pathogens. This includes Culex peccator, a carrier of Eastern
Equine Encephalitis virus [81], and Uranotaenia unguiculata, a
vector of WNV [82]. Frog-biting midges are also suspected
vectors of Batrachochytrium dendrobatidis [83], a chytrid fungus
implicated in anuran population declines worldwide [84].
Though examinations of vector-borne disease dynamics in
anurans are still limited, they offer promising opportunities
to broaden our understanding of disease transmission in
mixed-species assemblages.

Overall, hosts across taxonomic groups that participate in
mixed-species assemblages are susceptible to suffer from col-
lateral damage or could benefit from shadow of safety effects,
and these changes in vector attack rate could influence trans-
mission dynamics in previously unanticipated ways. Lessons
from the case study presented here likely extend to mixed-
species assemblages in a variety of taxa. While some vectors
and parasites in those systems use cues in other sensory
modalities, biases in the sensory filters that mediate detection
and responses to host-emitted cues are likely universal.
6. Model
To explore the consequences of cue exploitation for disease
dynamics in mixed-species assemblages, we develop a simple
mathematical model based on the Ross-Macdonald model for
vector-borne disease dynamics [85] for an assemblage consist-
ing of two host species: a ‘signalling’ host that emits cues that
vectors detect (with population size H1); a second non-signal-
ling host (H2); and a biting vector (V ). While we refer to the
first host species as ’signalling’, the model is applicable to any
host-emitted cue that the second host does not produce. Hosts
and vectors are tracked by their infection status: susceptible
(Sj) or infected (Ij) ( j = 1, 2, V ). The equations describing
population and infection dynamics are:

dS1
dt

¼ m1(K1 � S1)� a1Vb
pH1

pH1 þH2

� �
S1
H1

IV , ð6:1Þ

dI1
dt

¼ a1Vb
pH1

pH1 þH2

� �
S1
H1

IV � (m1 þ v1)I1, ð6:2Þ

dS2
dt

¼ m2(K2 � S2)� a2Vb
H2

pH1 þH2

� �
S2
H2

IV , ð6:3Þ

dI2
dt

¼ a2Vb
H2

pH1 þH2

� �
S2
H2

IV � (m2 þ v2)I2, ð6:4Þ
dSV
dt

¼ l�mVSV

� bSV aV1
pH1

pH1 þH2

� �
I1
H1

þ aV2
H2

pH1 þH2

� �
I2
H2

� �

ð6:5Þ
and

dIV
dt

¼ bSV aV1
pH1

pH1 þH2

� �
I1
H1

þ aV2
H2

pH1 þH2

� �
I2
H2

� �

�mVIV ,

ð6:6Þ
where for host j, Kj is the species’maximum disease-free popu-
lation size or carrying capacity and mj and vj are respective per
capita rates of natural and disease-induced mortality. Vectors
are attracted to the assemblage at rate λ and bite hosts at a
rate b; p describes attraction to the signalling host within the
assemblage that results in biting (i.e. how much more likely
the signalling host is to be bitten than the non-signalling host
if they were equally abundant); and a bite causes infection to
species j from species k with probability ajk. Cues from the
signalling host can alter infection dynamics through three
mechanisms (figure 1c): (i) increasing the vector numbers
attracted to the mixed-species assemblage, λ (i.e. assemblage
attraction); (ii) increasing vector search efficiency, and thus bite
rate, b; and (iii) increasing bite attraction to the signalling host
within the assemblage (p). We assume that assemblage attrac-
tion and bite rate scale with the number of signalling hosts.
Defining x0 as the value of parameter x (x = λ, b) in the absence
of cues, and θx as the fold change in xwhen the signalling host is
at carrying capacity (figure 2), these can be expressed as:

x ¼ x0 1þ (ux � 1)
H1

K1

� �
: ð6:7Þ

Locally, we assume that host-emitted cues alter bite
attraction to signalling hosts, so that

p ¼ upp0, ð6:8Þ

where p0 is the bite attraction to signalling hosts within the
assemblage in the absence of cues, and θp is the fold
change in bite attraction due to cue detection.

To focus on how vector responses to host cues influence
dynamics, we analyze a simplified model where in the
absence of signalling, the two hosts are ecologically and epi-
demiologically identical (i.e. they have the same carrying
capacity and mortality rates; hosts and vectors have an
equal probability of infection from a bite, and hosts experi-
ence the same bite rates). Under these assumptions, we
determine the effect of host cues on outbreak potential by cal-
culating the pathogen basic reproduction number (electronic
supplementary material S1–S3), the number of new infections
arising from an index case in an infection-naive assemblage:

R0 ¼ R0(0)ub

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ul(1þ u2p)

ð1þ upÞ2

vuut , ð6:9Þ

where R0(0) is R0 in the absence of signalling effects, θb and θλ
describe how bite rate and assemblage attraction increase
with signalling host density, and θp describes how bite attrac-
tion increases with individual host signals. This expression
shows that outbreak potential increases most rapidly (line-
arly) with signalling effects on bite rate, sub-linearly with
assemblage attraction, and increases but saturates with bite
attraction (figure 3a). Combined effects of signalling on two
or more of these processes act to further increase R0, with
bite attraction to the signalling host having the weakest posi-
tive effect.

We solved the model numerically to determine the
species-level effects (electronic supplementary material, S4,
figure S1) and assemblage-level effects of signalling on equi-
librium infection prevalence in the assemblage (fraction of
hosts in the assemblage that are infected), assemblage size
(total number of hosts in the assemblage) and assemblage
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composition (relative abundance of signalling hosts in
the assemblage; figure 3b–d). Infection prevalence has an
increasing, saturating relationship with the strength of each
signalling effect (figure 3b) and assemblage size has a
decreasing, saturating relationship (figure 3c). Signalling
effects on bite rate cause the most pronounced increase in
prevalence (and thus the strongest regulation of assemblage
population size), followed by effects on assemblage
attraction, and their combined effects have the strongest posi-
tive effect overall. Cues that increase bite attraction to
signalling hosts within the assemblage cause a small increase
in assemblage prevalence and decrease in assemblage size.
However, in combination with other signalling effects, bite
attraction slightly decreases assemblage prevalence and
reduces the negative effects on assemblage size. This is
because, while bite attraction within the assemblage always
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increases prevalence in the signalling host (electronic sup-
plementary material, figure S1a), the concurrent reduction
in prevalence in the non-signalling host through bite redistri-
bution (electronic supplementary material, figure S1b) causes
a net reduction in assemblage prevalence.

The effects of signalling on bite attraction are most
strongly observed on assemblage composition. Signalling
effects on bite rate or assemblage attraction do not change
species composition without bite attraction to the signalling
host within the assemblage, because vectors distribute bites
equally among hosts once at the assemblage. However, bite
attraction to signalling hosts decreases the relative abundance
of the signalling host (figure 3d ). This decline is most pro-
nounced when cues affect bite attraction only (figure 3d ).
When cues also influence bite rate and assemblage attraction,
the effects on host composition are weaker and can become
nonlinear (i.e. the relative abundance of the signalling host
is lowest at intermediate signalling effects). This is because
signalling-induced increases in bite rate and assemblage
attraction cause increases in vector attacks to both host
types, and thus infection prevalence (electronic supple-
mentary material, figures S1a,b). This, in turn, decreases
both hosts’ abundance (electronic supplementary material,
figures S1c,d) and counteracts the effect of bite attraction to
the signalling hosts.

Altogether, results from this simplified model suggest that
host signalling effects on vector host-seeking behaviour can
have profound impacts on pathogen outbreak potential, assem-
blage size and composition. These effects could be further
exacerbated in host assemblages where host species differ in
life history and competence for infection. Consideration of
biases in cue-oriented vectors and how they are expressed
at different scales may contribute to understanding disease-
diversity relationships inmultihost-vectored pathogen systems.
7. Discussion
(a) Implications for transmission dynamics in

assemblages
Mirroring previous studies, our model indicates that the
relative attractiveness of host species can strongly influence
disease dynamics. We focus here on contexts where hosts
are spatially concentrated in mixed-species assemblages and
conceptualize foraging behaviour of cue-oriented vectors
and parasites as having two stages: (i) attraction to the assem-
blage, where the relative abundance of different host cues
can mediate the number of vectors or parasites drawn to
the group (assemblage attraction) and/or their foraging
efficiency (bite rate), and (ii) attraction to a host within the
assemblage, where vectors or parasites use cues to choose
and ultimately bite hosts (bite attraction). Our model high-
lights that an interplay between these cue effects on vector
abundance and foraging can affect disease prevalence as
well as the differential risks faced by each host species
within the assemblage. Further, when disease induces
host mortality, vector biases in attack rates could ultimately
feed back to shape assemblage structure.

The findings and concepts presented in this study are
broadly applicable. Mixed-species assemblages span a broad
range of taxa and contexts and act as arenas for vector-borne
and zoonotic diseases [21,23,25,27]. Natural contexts for such
assemblages arediverse and includemixed flocks or communal
roosts of birds and bats, herds of grazing ungulates, fish shoals
or aggregations surrounding submerged structures such as
reefs, vertebrate or invertebrate communities within vernal
pools, scavengers and detritivores at carcasses and breeding
aggregations of amphibians. Mixed-species assemblages also
result from human activity and include communally housed
livestock, cohabitation of domestic animals and humans, mar-
kets selling live animals, mixed herds of grazing livestock
and resource subsidies for wildlife and zoos. In any of these
contexts, the mixture of cues propagating to foraging enemies
outside of an assemblage, and the cues used to assess hosts
once at the assemblage, could influence overall infection rates
and infection prevalence in each host species.

One context where assessing the consequences of assem-
blage and bite attraction processes for transmission may be
particularly fruitful is mating aggregations of closely related
species, where assemblage members may share vectors and
have similar competence for some pathogens [86]. As hosts
are producing mating signals, however, they are likely to
differ in their attractiveness to eavesdropping vectors and
parasites. Frog species in the Engystomops petersi complex in
the Amazonian Ecuador call from the same ponds [87],
and produce mating calls that vary in complexity [88,89].
Given that similar variation in call complexity results in
differential attraction of frog-biting midges in congeneric tún-
gara frogs [45], mixed-species assemblages in this complex
may experience differential pathogen exposure modulated
by asymmetries in assemblage and bite attraction. Similarly,
in temperate regions, eavesdropping Culex territans mosqui-
toes bite frogs from closely related species (Lithobates
clamitans, L. catesbiana and L. virgatipes) that often call at the
same choruses, and share the same trypanosome species [90].
(b) Future research directions
Our model and conceptual framework for understanding dis-
ease dynamics in mixed-species assemblages suggests several
directions for further research. One intriguing result from the
model is that cue-induced vector biting biases can alter
assemblage size and composition, with potentially important
ecological and evolutionary consequences. Given conserva-
tion and public health threats from emerging and zoonotic
vector-borne pathogens, this warrants future exploration.
Additionally, because host competence, tolerance and avoid-
ance behaviours can greatly influence disease dynamics,
especially when paired with vector or parasite bias for certain
host-types [62], incorporation of interspecific variation in host
ecological and epidemiological features into our model could
be important for predicting and managing zoonotic risk. As
disease control strategies often focus on a single or few
hosts that play comparatively large roles in amplifying patho-
gen transmission [91], these could include highly competent
hosts that are attractive to vectors within an assemblage.
Our results suggest that host types whose cues disproportio-
nately attract vectors to an assemblage can have a strong
amplifying effect even if they are bitten less, and could,
thus, be apt targets for control.

Our understanding of how biases in attraction change as
cue-oriented vectors or parasites approach a host is still limited.
The ‘activation’ and ‘orientation’ phases of foraging have been
well studied in some mosquitoes [69], and early experiments
with tsetse flies isolated different cues used for long- versus
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short-range attraction [71]. Extending this approach to a
broader range of vectors and parasites attacking hosts in both
mono- and mixed-species assemblages, and a more thorough
quantification of the active spaces of host-emitted cues,
are necessary to deepen our understanding of vector and
parasite attraction.

Empirical data are needed from explicit comparisons of
infection prevalence for given species in mono-specific versus
mixed-species assemblages in both wild and domestic con-
texts. Differences in prevalence between these contexts
provide opportunities to investigate the relative importance
to transmission dynamics of cue-modulated attraction to the
assemblage and attraction within the assemblage. Moreover,
understanding how these mechanisms alter disease dynamics
when housing particular combinations of domestic orwild ani-
mals together will inform development of policies to minimize
potential disease outbreaks. Consideration of changes in
ecological interactions and assemblage composition due to
resource supplementation by humans, potentially connecting
wild and domestic host species [92], will also be critical to
understanding how vector and parasite biases modulate
disease dynamics in anthropogenic environments.

Finally, although we focused on disease dynamics in
mixed-species assemblages, our model and conceptual frame-
work integrating assemblage attraction, search efficiency/bite
rate and within-assemblage bite attraction are applicable to
any gathering of multiple host types. This includes conspecific
groupings where vectors or parasites show differential attrac-
tion to multiple host types, such as infected and healthy,
male and female or larger and smaller individuals. The rel-
evance of our model will be determined by the degree of
variation in host-emitted cues among assemblage members,
whether those cues propagate beyond the assemblage, and
whether cue variation results in attraction biases and changes
in search efficiency by vectors and parasites. In such contexts,
our model brings new perspectives aimed at contributing to
a more complete understanding of transmission dynamics.
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